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ABSTRACT 
 

In this paper, we present a parameter expansion method for two-point nonlinear singularly perturbed boundary value 

problem for second order ordinary differential equation. Newton linearisation scheme is used to linearise the 

nonlinear problem. 
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I. INTRODUCTION 

 

Consider a nonlinear singularly perturbed second 

order boundary value problem yG  defined by 

 

''(x) f(x, y, y', ) y'(x) 0,      a x  byG y      

      (1) 

( , )y a        (2) 

(b, )y        (3) 

 

for small positive values of the parameter  , 

satisfying 00     for some 0 , while , , ,a b    

are independent of 0 . 

 

The Newton’s scheme for Taylor’s series expansion 

given by 
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G G G
G y y y
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  (4) 

 

will be used throughout this work. 

 

Thus, from (1), we obtain the following 
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 Substituting (5) into (4), we have 
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                                    (6) 

 

where  
( ) ( ) ( )

1( ) ( ) ( )j j j

k k ky x y x y x    

The Newton’s linearisation leads to the use of the 

following iteration; 
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1( , )ky a                           (8) 

1(b, )ky                 (9) 

 

 

The Method of Parameter Expansion 

 

The method seeks an asymptotic expansion based 

on the idea of Okoroet al [1], which converts the 
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singularly perturbed problem to a system of 

ordinary differential equations for which the 

solutions are relatively easier to obtain. The 

ordinary differential equations are reduced to 

algebraic equations using the perturbed collocation 

method described in [1]. In order to solve (7) with 

this method, we seek a patched solution in two 

regions, namely the boundary layer region  B LI  

and outside the boundary layer region   O B LI  where 

 

 :I x G x b      O B LI  B LI     

Without any loss of generality, we set 

 

 
 

 

1 1

2 2

:

:

OBL

BL

I x a x b

I x a x b

  

  
 

 

Where 1 1 2 2a a b a b b     

 

In the region IOBL, we seek a smooth collocation 

solution of the form 1, ( )Ny x  and in the region IBL, 

we seek the parameter expansion 2,M ( , )y x  . In the 

smooth solution, let, 

 

1

1, 1 1 1( ) ,   
N

i

Ny x a x a x b     (10) 

 

satisfies exactly the slightly perturbed collocation 

equations 
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,
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Where 

 1 1( )
;    1,2,  . . . ,

1

i

i i

b a
x a i N

N


  


  (12) 

2

1,

  1

( ) * ( );    N i N N K i

K

H x t T x a x b



    (13) 

And 

* ( ) (2 1);     N i N i iT x T x a x b                 (14) 

 

is the shifted Chebyshev polynomial, and 

1, ( 1,2)kt k  are arbitrary constants to be determined  

 

and 

 

TN (x) = cos[N arccos(x)]; N ≥ 0,  [-1, 1] 

The zeros of T *N (x) are given by  

 

1
( ) ( )cos (2 1) ;    1,. . . ,

2 2
jx a b a b j j N

N

  
       

  

. 

 

Also, 1, ( )Ny x  must satisfy the arbitrary conditions 

1, (a, )Ny         (15) 

and 

1, (b, )Ny  = 2,M 2(a , )y     

      (16) 

 

The Chebyshev perturbation (14) is well-known to 

yield an accurate approximation. 

 

On substituting (10) in (11) we obtain N collocation 

equations. Two extra equations are obtain using (15) 

and (16). 

 

Altogether, we have (N + 2) collocation equations 

which give the unique values of

0 1 1,1 1,2, ,..., , andNa a a   . Also, inside the boundary 

layer region BLI , we seek a uniform valid parameter 

expansion in the form.

  
1

2, 2 2

 = 1

(x, ) ( ) ;     
j

N
j

N

j

y g x a x b    
 

(17) 

 

 

 

which satisfies the following perturbed two-dimensional form of equation (7) 
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Also, 2,M (x, )y   must satisfy the following conditions 

 

2,M 2(a , )y  = 1,N 1(b )y  

2,M 2(b , )y  =            (19) 

 

and 

 

2,M (x,1) (x)y   

2,M (x,0) (x)y             (20) 

 

 

 

where (x) and (x)  are obtained from (1) when   = 1 and when   = 0 respectively. 

 

Collocating equation (19) at points 1 , we obtain 
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  (21)  

where 

;    I = 1, 2, . . . , M+1
2

i

i

M
 


         (22) 

 

Thus, we obtain (M + 1) second order ordinary differential equations in (M + 3) unknown functions, g1(x), 

g2(x), g3(x), . . . , gM (x), µ2,1 and µ2,2. 

 

The arbitrary µ-functions are then eliminated to give a set of (M - 2) second order ordinary differential 

equations. Two extra equations are obtained using (19). Altogether, we have M second order ordinary 

differential equation. The M second order ordinary differential equations are then perturbed and collocated 

in the same manner as in (11). Equations (20) are satisfied at the Chebyshev points xi (i = 1, 2, 3, . . . , M ). 

These equations together with (12), (15) and (16) give the values of the constants ai, gij  ( i = 1, 2, . . . , N ; j 

= 1, 2, . . . , M ) for the required approximation. 
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  1

1, 1 1 1
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i j

N ji

j
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A Worked Example consider the nonlinear second order bvp 

 

''( ) ( ) '( ) 0,   1 1y x y x y x x       

With the boundary conditions 

4
( 1) tanhy



 
    

 
     and 

4
(1) tanhy



 
  

 
 

The analytical solution is given by 

4
(x) tanh

x
y



 
  

 
 

The Newton’s iterates using (7) on (5) are given by 

 

, 1 , , 1 , ,'' ( , ) ( , ) ' ( , ) ( , ) ( , )N K N K N K N K N Ky x y x y x y x y x       
  
=  , ,( , ) ' ( , );      1,1N K N Ky x y x x     

 

and 
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4
( 1,  ) tanhN Ky 




 
    

   

, 1

4
(1,  ) tanhN Ky 




 
  

 
 

For K = 0, the initial approximation used is 

,

4
(x) tanhN K

x
y



 
  

 
 

 

Table 1: Error Estimates for Case N = 5, M = 4 

 

  Standard collocation 

tau method 

Parameter Expansion 

Method 

10 
- 2 

10 
- 3 

10 
- 4 

10 
- 5 

10 
- 6 

10 
- 7 

10 
- 8 

10 
- 9

 

1.516 × 10
1
  

1.824 × 10 
- 2 

 

 1.939 × 10 
- 3

  

 2.226 × 10 
- 3

  

2.251 × 10 
- 4 

 

2.283 × 10 
- 4

 

2.487 × 10 
- 5

  

2.842 × 10 
- 5

  

1.516 × 10
1 

2.053 × 10 
- 2

 

5.281 × 10 
- 3

 

2.172 × 10 
- 3

 

7.399 × 10 
- 4

 

4.052 × 10 
- 4

 

2.459 × 10 
- 5

 

2.725 × 10 
- 5
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II. CONCLUSION 

 

The numerical results show that the accuracy of the 

proposed method when compared with the standard 

collocation tan method improves as   tends to zero. 
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