

# Application of Parameter Expansion Method for Nonlinear Singularly Perturbed Boundary Value Problems (BVP'S) S. A. Egbetade, I. A. Salawu, S. A. Agboluaje

Department of Mathematics and Statistics, The Polytechnic, Ibadan

## ABSTRACT

In this paper, we present a parameter expansion method for two-point nonlinear singularly perturbed boundary value problem for second order ordinary differential equation. Newton linearisation scheme is used to linearise the nonlinear problem.

(2)

Keywords: Boundary Value Problems, Newton Linearisation Scheme

### I. INTRODUCTION

Consider a nonlinear singularly perturbed second order boundary value problem  $G_{\varepsilon y}$  defined by

| $G_{\varepsilon y} = \varepsilon y''(x) - f(x, y, y', \varepsilon) y'(x) = 0,$ | $a \leq x \ \leq \ b$ |
|--------------------------------------------------------------------------------|-----------------------|
|                                                                                | (1)                   |

$$y(a,\varepsilon) = \alpha$$

$$y(\mathbf{b},\varepsilon) = \beta \tag{3}$$

for small positive values of the parameter  $\varepsilon$ , satisfying  $0 \le \varepsilon \le \varepsilon_0$  for some  $\varepsilon_0$ , while  $a, b, \phi, \beta$ are independent of  $\varepsilon_0$ .

The Newton's scheme for Taylor's series expansion given by

$$G + \Delta y \frac{\partial G}{\partial y} + \Delta y' \frac{\partial G}{\partial y'} + \Delta y'' \frac{\partial G}{\partial y''} = 0$$
(4)

will be used throughout this work.

Thus, from (1), we obtain the following

$$\frac{\partial G}{\partial y} = -f_y y'; \quad \frac{\partial G}{\partial y'} = -(f_{y'})y' - f; \quad \frac{\partial G}{y''} = \varepsilon$$
(5)

Substituting (5) into (4), we have

$$G_{k} + \Delta y_{k} \left( -y_{k} \frac{\partial f_{yk}}{\partial y_{k}} \right) + \Delta y'_{k} \left( -(f_{k} - y'_{k} \frac{\partial f_{k}}{\partial y'_{k}} \right) + \Delta y''_{k} (\varepsilon) = 0$$
(6)

where  $\Delta y_{k}^{(j)}(x) = y_{k+1}^{(j)}(x) - y_{k}^{(j)}(x)$ 

The Newton's linearisation leads to the use of the following iteration;

$$\varepsilon y''_{k+1}(x) - \left(f_k + y'_k(x)\frac{\partial f(x)}{\partial y'_k}\right)y'_{k+1}(x) - \left(y'_k\frac{\partial f_{yk}}{\partial y_k}\right)y_{k+1}(x) = \varepsilon y'_k(x) - y_k(x)y'_k(x)\frac{\partial f_{yk}}{\partial y_k} - y'_k(x)\frac{\partial f}{\partial y_k} - G_k$$
(7)

$$y_{k+1}(a,\varepsilon) = \phi \tag{8}$$

$$y_{k+1}(\mathbf{b},\varepsilon) = \beta \tag{9}$$

#### The Method of Parameter Expansion

The method seeks an asymptotic expansion based on the idea of Okoroet al [1], which converts the singularly perturbed problem to a system of ordinary differential equations for which the solutions are relatively easier to obtain. The ordinary differential equations are reduced to algebraic equations using the perturbed collocation method described in [1]. In order to solve (7) with this method, we seek a patched solution in two regions, namely the boundary layer region  $I_{BL}$  and outside the boundary layer region  $I_{OBL}$  where

$$I = \{x : G \le x \le b\} = I_{OBL} I_{BL}$$
  
Without any loss of generality, we set

$$I_{OBL} = \left\{ x : a_1 \le x \le b_1 \right\}$$
$$I_{BL} = \left\{ x : a_2 \le x \le b_2 \right\}$$

Where  $a < a_1 < b_1 = a_2 < b_2 = b$ 

In the region  $I_{OBL}$ , we seek a smooth collocation solution of the form  $y_{1,N}(x)$  and in the region IBL, we seek the parameter expansion  $y_{2,M}(x,\varepsilon)$ . In the smooth solution, let,

$$y_{1,N}(x) = \sum_{i=1}^{N} a_{1} x^{i-1}, \ a_{1} \le x \le b_{1}$$
 (10)

satisfies exactly the slightly perturbed collocation equations

$$\varepsilon y''_{N,k+1}(x_i) - \left(f_k + y'_{N,k+1}(x_i)\frac{\partial f}{\partial y_k}\right) y'_{N,k+1}(x_i) - \left(y'_{N,k}(x_i)\frac{\partial f_{yNk}}{\partial y_{N,k}}\right) y_{N,k+1}(x_i) = \varepsilon y''_{N,k+1}(x) - y_{N,k}(x_i) y'_{N,k}(x)\frac{\partial f_{yNk}}{\partial y_{N,k}} - y'_{N,k}(x) \left(f_k + y'_{N,k}(x)\frac{\partial f}{\partial y_k}\right) G_k + H_N(x_i)$$

Where

$$x_{i} = a_{i} + \frac{(b_{1} - a_{1})^{i}}{N+1}; \quad i = 1, 2, \dots, N$$
(12)  
$$H_{N}(x_{i}) = \sum_{K=1}^{2} t_{1,N} T *_{N-K} (x_{i}); \quad a \le x \le b$$
(13)

which satisfies the following perturbed two-dimensional form of equation (7)

And

$$T_{N}^{*}(x_{i}) = T_{N}(2x_{i}-1); \quad a \le x_{i} \le b$$
 (14)

is the shifted Chebyshev polynomial, and  $t_{1,k}$  (k = 1, 2) are arbitrary constants to be determined

and

$$\begin{split} T_{N}\left(x\right) &= \cos[N \ arccos(x)]; \ N \geq 0, \qquad [-1, \ 1] \\ \text{The zeros of } T \ *_{N}(x) \ \text{are given by} \end{split}$$

$$x_{j} = \frac{1}{2} \left( (a+b) - (a-b) \cos\left( (2j-1)\frac{\pi}{2N} \right) \right); \quad j = 1, \dots, N$$

Also,  $y_{1,N}(x)$  must satisfy the arbitrary conditions

$$y_{1,N}(\mathbf{a},\varepsilon) = \phi \tag{15}$$

and

$$y_{1,N}(\mathbf{b},\varepsilon) = y_{2,M}(\mathbf{a}_2,\varepsilon)$$
(16)

The Chebyshev perturbation (14) is well-known to yield an accurate approximation.

On substituting (10) in (11) we obtain N collocation equations. Two extra equations are obtain using (15) and (16).

Altogether, we have (N + 2) collocation equations which give the unique values of  $a_0, a_1, ..., a_N, \mu_{1,1}$  and  $\mu_{1,2}$ . Also, inside the boundary = layer region  $I_{BL}$ , we seek a uniform valid parameter expansion in the form.

$$y_{2,N}(\mathbf{x},\varepsilon) = \sum_{j=1}^{N} g_{j}(\mathbf{x})\varepsilon^{j-1}; \quad a_{2} \le x \le b_{2}$$
(17)

223

$$\varepsilon \frac{\partial^2 y_{2,M}(x,\varepsilon)}{\partial x^2} + p(x) \frac{\partial y_{2,M}(x,\varepsilon)}{\partial x} + q(x) y_{2,M}(x,\varepsilon) + G_1(x,\varepsilon) = H_{2,M}(x,\varepsilon)$$
(18)

where

$$p(x) = -\left(f_{k}y'_{k}(x)\frac{\partial f}{\partial y_{k}}\right); \quad \mathbf{q}(x) = -\left(y'_{k}(x)\frac{\partial f_{y_{k}}}{\partial y_{k}}\right)$$
$$G_{1}(x,\varepsilon) = y''_{k}(x) + y_{k}(x)y'_{k}(x)\frac{\partial f_{y_{k}}}{\partial y_{k}} - y'_{k}(x)\left(f_{k} + y'_{k}(x)\frac{\partial f}{\partial y_{k}}\right) - G_{k}$$
$$H_{2,M}(x,\varepsilon) = \sum_{k=0}^{2} \mu_{2,1}T^{*}_{M-1}(\varepsilon); \quad a_{2} \le x \le b_{2}$$

Also,  $y_{2,M}(x,\varepsilon)$  must satisfy the following conditions

$$\left. \begin{array}{l} y_{2,M}(\mathbf{a}_{2},\varepsilon) = y_{1,N}(\mathbf{b}_{1}) \\ y_{2,M}(\mathbf{b}_{2},\varepsilon) = \beta \end{array} \right\}$$

$$(19)$$

and

$$\left.\begin{array}{l} y_{2,M}\left(\mathbf{x},1\right) = \phi(\mathbf{x}) \\ y_{2,M}\left(\mathbf{x},0\right) = \varepsilon(\mathbf{x}) \end{array}\right\}$$

$$(20)$$

where  $\phi(x)$  and  $\varepsilon(x)$  are obtained from (1) when  $\varepsilon = 1$  and when  $\varepsilon = 0$  respectively.

Collocating equation (19) at points  $\varepsilon_1$ , we obtain

$$\varepsilon_{1} \frac{\partial^{2} y_{2,M}(x,\varepsilon_{1})}{\partial x^{2}} + p(x) \frac{\partial y_{2,M}(x,\varepsilon_{1})}{\partial x} + q(x) y_{2,M}(x,\varepsilon_{1}) + G_{1}(x,\varepsilon_{1}) = H_{2,M}(x,\varepsilon_{1})$$
where
$$(21)$$

$$\varepsilon_i = \frac{i}{M+2}; \quad I = 1, 2, \dots, M+1$$
 (22)

Thus, we obtain (M + 1) second order ordinary differential equations in (M + 3) unknown functions,  $g_1(x)$ ,  $g_2(x)$ ,  $g_3(x)$ , ...,  $g_M(x)$ ,  $\mu 2, 1$  and  $\mu_{2,2}$ .

The arbitrary  $\mu$ -functions are then eliminated to give a set of (M - 2) second order ordinary differential equations. Two extra equations are obtained using (19). Altogether, we have M second order ordinary differential equations are then perturbed and collocated in the same manner as in (11). Equations (20) are satisfied at the Chebyshev points  $x_i$  (i = 1, 2, 3, ..., M). These equations together with (12), (15) and (16) give the values of the constants  $a_i$ ,  $g_{ij}$  (i = 1, 2, ..., N; j = 1, 2, ..., M) for the required approximation.

224

$$y_{1,N}(\mathbf{x}) = \sum_{j=1}^{N} a_1 x^{i-1}; \quad a_1 \le x \le b_1$$

$$y(x) \square \ y_N(x) = y_{2,M}(\mathbf{x},\varepsilon) = \sum_{j=1}^{M} g_{ji} x^{i-1} \varepsilon^{j-1}; \quad a_2 \le x \le b_2$$
(23)

A Worked Example consider the nonlinear second order bvp

$$\varepsilon y''(x) - y(x)y'(x) = 0, \quad -1 \le x \le 1$$

With the boundary conditions

$$y(-1) = -\tanh\left(\frac{4}{\varepsilon}\right)$$
 and  $y(1) = \tanh\left(\frac{4}{\varepsilon}\right)$ 

The analytical solution is given by

$$y(\mathbf{x}) = \tanh\left(\frac{4x}{\varepsilon}\right)$$

The Newton's iterates using (7) on (5) are given by

$$\varepsilon y''_{N,K+1}(x,\varepsilon) - y_{N,K}(x,\varepsilon) y'_{N,K+1}(x,\varepsilon) - y_{N,K}(x,\varepsilon) y_{N,K}(x,\varepsilon) = -y_{N,K}(x,\varepsilon) y'_{N,K}(x,\varepsilon); \quad x \in [-1,1]$$

and

$$y_{N,K+1}(-1, \varepsilon) = -\tanh\left(\frac{4}{\varepsilon}\right)$$
$$y_{N,K+1}(1, \varepsilon) = \tanh\left(\frac{4}{\varepsilon}\right)$$

For K = 0, the initial approximation used is

$$y_{N,K}(\mathbf{x}) = \tanh\left(\frac{4x}{\varepsilon}\right)$$

| Table 1: | Error | Estimates | for | Case | N = | 5, $M = 4$ |
|----------|-------|-----------|-----|------|-----|------------|
|----------|-------|-----------|-----|------|-----|------------|

| Е                | Standard collocation   | Parameter Expansion    |
|------------------|------------------------|------------------------|
|                  | tau method             | Method                 |
| 10 - 2           | $1.516 \times 10^{1}$  | $1.516 \times 10^{1}$  |
| 10 <sup>-3</sup> | $1.824 \times 10^{-2}$ | $2.053 \times 10^{-2}$ |
| 10 - 4           | $1.939 \times 10^{-3}$ | $5.281 \times 10^{-3}$ |
| 10 - 5           | $2.226 \times 10^{-3}$ | $2.172 \times 10^{-3}$ |
| 10 - 6           | $2.251 \times 10^{-4}$ | $7.399 \times 10^{-4}$ |
| 10 - 7           | $2.283 \times 10^{-4}$ | $4.052 \times 10^{-4}$ |
| 10 - 8           | $2.487 \times 10^{-5}$ | $2.459 \times 10^{-5}$ |
| 10 - 9           | $2.842 \times 10^{-5}$ | $2.725 \times 10^{-5}$ |
| 1                |                        |                        |

#### **II. CONCLUSION**

The numerical results show that the accuracy of the proposed method when compared with the standard collocation tan method improves as  $\varepsilon$  tends to zero.

#### **III. REFERENCES**

- Okoro, F., Onumanyi, P. and Taiwo, O.A. (1988); Exponential fitting and parameter expansion in the tau method for two-point singularly perturbed boundary vaue problem computatioal Mathematics III, 203 - 207.
- [2] Onumanyi, P. and Ortiz, E.L. (1984). Numerical solution of sti and singularly perturbed boundary value problems with a segmented adaptive formulation of the tau method, Math. Comp. 43, 189-203.
- [3] Taiwo, O.A. and Onumanyi, P. (1990). A collocation approximation of singularly perturbed second order ordinary di erential equation, Comp. Math. 40, 35-40.