Application of Parameter Expansion Method for Nonlinear Singularly Perturbed Boundary Value Problems (BVP'S)

S. A. Egbetade, I. A. Salawu, S. A. Agboluaje
Department of Mathematics and Statistics, The Polytechnic, Ibadan

Abstract

In this paper, we present a parameter expansion method for two-point nonlinear singularly perturbed boundary value problem for second order ordinary differential equation. Newton linearisation scheme is used to linearise the nonlinear problem.

Keywords: Boundary Value Problems, Newton Linearisation Scheme

I. INTRODUCTION

Consider a nonlinear singularly perturbed second order boundary value problem $G_{\varepsilon y}$ defined by
$G_{\varepsilon y}=\varepsilon y^{\prime \prime}(\mathrm{x})-\mathrm{f}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}^{\prime}, \varepsilon\right) \mathrm{y}^{\prime}(\mathrm{x})=0, \quad \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
$y(a, \varepsilon)=\alpha$
$y(\mathrm{~b}, \varepsilon)=\beta$
for small positive values of the parameter ε, satisfying $0 \leq \varepsilon \leq \varepsilon_{0}$ for some ε_{0}, while a, b, ϕ, β are independent of ε_{0}.

The Newton's scheme for Taylor's series expansion given by

$$
\begin{equation*}
G+\Delta y \frac{\partial G}{\partial y}+\Delta y^{\prime} \frac{\partial G}{\partial y^{\prime}}+\Delta y^{\prime \prime} \frac{\partial G}{\partial y^{\prime \prime}}=0 \tag{4}
\end{equation*}
$$

will be used throughout this work.

Thus, from (1), we obtain the following

$$
\begin{equation*}
\frac{\partial G}{\partial y}=-f_{y} y^{\prime} ; \quad \frac{\partial G}{\partial y^{\prime}}=-\left(f_{y^{\prime}}\right) y^{\prime}-f ; \quad \frac{\partial G}{y^{\prime \prime}}=\varepsilon \tag{5}
\end{equation*}
$$

Substituting (5) into (4), we have

$$
\begin{equation*}
G_{k}+\Delta y_{k}\left(-y_{k} \frac{\partial f_{y k}}{\partial y_{k}}\right)+\Delta y_{k}^{\prime}\left(-\left(f_{k}-y_{k}^{\prime} \frac{\partial f_{k}}{\partial y_{k}^{\prime}}\right)+\Delta y_{k}^{\prime \prime}(\varepsilon)=0\right. \tag{6}
\end{equation*}
$$

where $\Delta y^{(j)}{ }_{k}(x)=y^{(j)}{ }_{k+1}(x)-y^{(j)}{ }_{k}(x)$
The Newton's linearisation leads to the use of the following iteration;

$$
\begin{align*}
& \varepsilon y_{k+1}^{\prime \prime}(x)-\left(f_{k}+y_{k}^{\prime}(x) \frac{\partial f(x)}{\partial y_{k}^{\prime}}\right) y_{k+1}^{\prime}(x)-\left(y_{k}^{\prime} \frac{\partial f_{y k}}{\partial y_{k}}\right) y_{k+1}(x)= \\
& \varepsilon y_{k}^{\prime}(x)-y_{k}(x) y_{k}^{\prime}(x) \frac{\partial f_{\text {,k }}}{\partial y_{k}}-y_{k}^{\prime}(x) \frac{\partial f}{\partial y_{k}}-G_{k} \tag{7}\\
& y_{k+1}(a, \varepsilon)=\phi \tag{8}\\
& y_{k+1}(\mathrm{~b}, \varepsilon)=\beta \tag{9}
\end{align*}
$$

The Method of Parameter Expansion

The method seeks an asymptotic expansion based on the idea of Okoroet al [1], which converts the
singularly perturbed problem to a system of ordinary differential equations for which the solutions are relatively easier to obtain. The ordinary differential equations are reduced to algebraic equations using the perturbed collocation method described in [1]. In order to solve (7) with this method, we seek a patched solution in two regions, namely the boundary layer region $I_{B L}$ and outside the boundary layer region $I_{O B L}$ where
$I=\{x: G \leq x \leq b\}=I_{O B L} I_{B L}$
Without any loss of generality, we set

$$
\begin{aligned}
& I_{\text {OBL }}=\left\{x: a_{1} \leq x \leq b_{1}\right\} \\
& I_{B L}=\left\{x: a_{2} \leq x \leq b_{2}\right\}
\end{aligned}
$$

Where $a<a_{1}<b_{1}=a_{2}<b_{2}=b$

In the region $\mathrm{I}_{\mathrm{ObL}}$, we seek a smooth collocation solution of the form $y_{1, N}(x)$ and in the region IBL, we seek the parameter expansion $y_{2, \mathrm{M}}(x, \varepsilon)$. In the smooth solution, let,

$$
\begin{equation*}
y_{1, N}(x)=\sum^{N} a_{1} x^{i-1}, \quad a_{1} \leq x \leq b_{1} \tag{10}
\end{equation*}
$$

satisfies exactly the slightly perturbed collocation equations

And
$T{ }_{N}\left(x_{i}\right)=T_{N}\left(2 x_{i}-1\right) ; \quad a \leq x_{i} \leq b$
is the shifted Chebyshev polynomial, and $t_{1, k}(k=1,2)$ are arbitrary constants to be determined and
$\mathrm{T}_{\mathrm{N}}(\mathrm{x})=\cos [\mathrm{N} \arccos (\mathrm{x})] ; \mathrm{N} \geq 0$,
The zeros of $\mathrm{T} *_{\mathrm{N}}(\mathrm{x})$ are given by
$x_{j}=\frac{1}{2}\left((a+b)-(a-b) \cos \left((2 j-1) \frac{\pi}{2 N}\right)\right) ; j=1, \ldots, N$.

Also, $y_{1, N}(x)$ must satisfy the arbitrary conditions

$$
\begin{equation*}
y_{1, N}(\mathrm{a}, \varepsilon)=\phi \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1, N}(\mathrm{~b}, \varepsilon)=y_{2, \mathrm{M}}\left(\mathrm{a}_{2}, \varepsilon\right) \tag{16}
\end{equation*}
$$

The Chebyshev perturbation (14) is well-known to yield an accurate approximation.

On substituting (10) in (11) we obtain N collocation equations. Two extra equations are obtain using (15) and (16).

Altogether, we have $(\mathrm{N}+2$) collocation equations which give the unique values of $a_{0}, a_{1}, \ldots, a_{N}, \mu_{1,1}$ and $\mu_{1,2}$. Also, inside the boundary $\varepsilon y_{N, k+1}\left(x_{i}\right)-\left(f_{k}+y_{N, k+1}^{\prime}\left(x_{i}\right) \frac{\partial f)}{\partial y_{k}}\right) y_{N, k+1}^{\prime}\left(x_{i}\right)-\left(y_{N_{N, k}}\left(x_{i}\right) \frac{\partial f_{y_{N k k}}}{\partial y_{N, k}}\right) y_{N_{N, k+1}}\left(x_{i}\right)=$ layer region $I_{B L}$, we seek a uniform valid parameter $\varepsilon y^{\prime \prime}{ }_{N, k+1}(x)-y_{N, k}\left(x_{i}\right) y_{N, k}^{\prime}(x) \frac{\partial f_{, N k}}{\partial y_{N, k}}-y_{N, k}^{\prime}(x)\left(f_{k}+y_{N, k}^{\prime}(x) \frac{\partial f}{\partial y_{k}}\right) G_{k}+H_{N}\left(x_{i}\right)$ expansion in the form.

$$
y_{2, N}(\mathrm{x}, \varepsilon)=\sum_{j=1}^{N} g_{j}(x) \varepsilon^{j-1} ; \quad a_{2} \leq x \leq b_{2}
$$

Where

$$
\begin{align*}
& x_{i}=a_{i}+\frac{\left(b_{1}-a_{1}\right)^{i}}{N+1} ; \quad i=1,2, \ldots, N \tag{17}\\
& H_{N}\left(x_{i}\right)=\sum_{K=1}^{2} t_{1, N} T^{*}{ }_{N-K}\left(x_{i}\right) ; \quad a \leq x \leq b \tag{12}
\end{align*}
$$

which satisfies the following perturbed two-dimensional form of equation (7)

$$
\begin{equation*}
\varepsilon \frac{\partial^{2} y_{2, M}(x, \varepsilon)}{\partial x^{2}}+p(x) \frac{\partial y_{2, M}(x, \varepsilon)}{\partial x}+q(x) y_{2, M}(x, \varepsilon)+G_{1}(x, \varepsilon)=H_{2, M}(\mathrm{x}, \varepsilon) \tag{18}
\end{equation*}
$$

where

$$
\begin{gathered}
p(x)=-\left(f_{k} y_{k}^{\prime}(x) \frac{\partial f}{\partial y_{k}}\right) ; \quad \mathrm{q}(x)=-\left(y_{k}^{\prime}(x) \frac{\partial f_{y k}}{\partial y_{k}}\right) \\
G_{1}(x, \varepsilon)=y^{\prime \prime}{ }_{k}(x)+y_{k}(x) y_{k}^{\prime}(x) \frac{\partial f_{y k}}{\partial y_{k}}-y_{k}^{\prime}(x)\left(f_{k}+y_{k}^{\prime}(x) \frac{\partial f}{\partial y_{k}}\right)-G_{k} \\
H_{2, M}(x, \varepsilon)=\sum_{k=0}^{2} \mu_{2,1} T^{*}{ }_{M-1}(\varepsilon) ; \quad a_{2} \leq x \leq b_{2}
\end{gathered}
$$

Also, $y_{2, \mathrm{M}}(\mathrm{x}, \varepsilon)$ must satisfy the following conditions

$$
\left.\begin{array}{l}
y_{2, \mathrm{M}}\left(\mathrm{a}_{2}, \varepsilon\right)=y_{1, \mathrm{~N}}\left(\mathrm{~b}_{1}\right) \tag{19}\\
y_{2, \mathrm{M}}\left(\mathrm{~b}_{2}, \varepsilon\right)=\beta
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
y_{2, \mathrm{M}}(\mathrm{x}, 1)=\phi(\mathrm{x}) \tag{20}\\
y_{2, \mathrm{M}}(\mathrm{x}, 0)=\varepsilon(\mathrm{x})
\end{array}\right\}
$$

where $\phi(\mathrm{x})$ and $\varepsilon(\mathrm{x})$ are obtained from (1) when $\varepsilon=1$ and when $\varepsilon=0$ respectively.

Collocating equation (19) at points ε_{1}, we obtain

$$
\begin{equation*}
\varepsilon_{1} \frac{\partial^{2} y_{2, M}\left(x, \varepsilon_{1}\right)}{\partial x^{2}}+p(x) \frac{\partial y_{2, M}\left(x, \varepsilon_{1}\right)}{\partial x}+q(x) y_{2, M}\left(x, \varepsilon_{1}\right)+G_{1}\left(x, \varepsilon_{1}\right)=H_{2, M}\left(\mathrm{x}, \varepsilon_{1}\right) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{i}=\frac{i}{M+2} ; \quad \mathrm{I}=1,2, \ldots, \mathrm{M}+1 \tag{22}
\end{equation*}
$$

Thus, we obtain $(M+1)$ second order ordinary differential equations in $(M+3)$ unknown functions, $g_{1}(x)$, $g_{2}(x), g_{3}(x), \ldots, g_{M}(x), \mu 2,1$ and $\mu_{2,2}$.

The arbitrary μ-functions are then eliminated to give a set of (M-2) second order ordinary differential equations. Two extra equations are obtained using (19). Altogether, we have M second order ordinary differential equation. The M second order ordinary differential equations are then perturbed and collocated in the same manner as in (11). Equations (20) are satisfied at the Chebyshev points $\mathrm{x}_{\mathrm{i}}(\mathrm{i}=1,2,3, \ldots, \mathrm{M})$. These equations together with (12), (15) and (16) give the values of the constants $\mathrm{a}_{\mathrm{i}}, \mathrm{g}_{\mathrm{ij}}(\mathrm{i}=1,2, \ldots, \mathrm{~N} ; \mathrm{j}$ $=1,2, \ldots, \mathrm{M})$ for the required approximation.
$y_{1, N}(\mathrm{x})=\sum_{j=1}^{N} a_{1} x^{i-1} ; \quad a_{1} \leq x \leq b_{1}$
$y(x) \square y_{N}(x)=y_{2, \mathrm{M}}(\mathrm{x}, \varepsilon)=\sum_{j=1}^{M} g_{j i} x^{i-1} \varepsilon^{j-1} ; \quad a_{2} \leq x \leq b_{2}$
A Worked Example consider the nonlinear second order bvp
$\varepsilon y^{\prime \prime}(x)-y(x) y^{\prime}(x)=0, \quad-1 \leq x \leq 1$
With the boundary conditions
$y(-1)=-\tanh \left(\frac{4}{\varepsilon}\right) \quad$ and $\quad y(1)=\tanh \left(\frac{4}{\varepsilon}\right)$
The analytical solution is given by
$y(\mathrm{x})=\tanh \left(\frac{4 x}{\varepsilon}\right)$
The Newton's iterates using (7) on (5) are given by
$\varepsilon y^{\prime \prime}{ }_{N, K+1}(x, \varepsilon)-y_{N, K}(x, \varepsilon) y_{N, K+1}^{\prime}(x, \varepsilon)-y_{N, K}(x, \varepsilon) y_{N, K}(x, \varepsilon)=-y_{N, K}(x, \varepsilon) y_{N, K}^{\prime}(x, \varepsilon) ; \quad x \in[-1,1]$
and
$y_{N, K+1}(-1, \varepsilon)=-\tanh \left(\frac{4}{\varepsilon}\right)$
$y_{N, K+1}(1, \varepsilon)=\tanh \left(\frac{4}{\varepsilon}\right)$
For $\mathrm{K}=0$, the initial approximation used is

$$
y_{N, K}(\mathrm{x})=\tanh \left(\frac{4 x}{\varepsilon}\right)
$$

Table 1: Error Estimates for Case $N=5, M=4$

ε	Standard collocation tau method	Parameter Expansion Method
10^{-2}	1.516×10^{1}	1.516×10^{1}
10^{-3}	1.824×10^{-2}	2.053×10^{-2}
10^{-4}	1.939×10^{-3}	5.281×10^{-3}
10^{-5}	2.226×10^{-3}	2.172×10^{-3}
10^{-6}	2.251×10^{-4}	7.399×10^{-4}
10^{-7}	2.283×10^{-4}	4.052×10^{-4}
10^{-8}	2.487×10^{-5}	2.459×10^{-5}
10^{-9}	2.842×10^{-5}	2.725×10^{-5}

II. CONCLUSION

The numerical results show that the accuracy of the proposed method when compared with the standard collocation tan method improves as ε tends to zero.

III. REFERENCES

[1] Okoro, F., Onumanyi, P. and Taiwo, O.A. (1988); Exponential fitting and parameter expansion in the tau method for two-point singularly perturbed boundary vaue problem computatioal Mathematics III, 203-207.
[2] Onumanyi, P. and Ortiz, E.L. (1984). Numerical solution of sti and singularly perturbed boundary value problems with a segmented adaptive formulation of the tau method, Math. Comp. 43, 189-203.
[3] Taiwo, O.A. and Onumanyi, P. (1990). A collocation approximation of singularly perturbed second order ordinary di erential equation, Comp. Math. 40, 35-40.

